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The dynamics of rotating fluids was, in the main, developed by methods special 
to the field, using the equationsof motion of a fluid inarotatingframe of reference. 
It is, nevertheless, possible to derive all the leading results from the classical 
principles of fluid dynamics in non-rotating frames; specifically, from the rules 
governing rate of change of vorticity. Although writers on the subject have 
adopted this approach increasingly often in recent years, the author believes 
that a broad survey of the field, deriving results from those classical rules con- 
cerning vorticity, has not previously been given and may be of some interest 
to fluid dynamicists in general. 

The present survey was read to the IUTAM Symposium on Rotating Fluid 
Systems at La Jolla, California, on 28 March 1966. It states briefly ($2)  the 
rules governing rate of change of vorticity, and then applies them, first, to prob- 
lems of steady relative motion of rotating fluids; in particular, of the atmosphere 
(0 3)) of rotating fluids in the laboratory ( §4), and of the oceans ( 5  5). Waves and 
wavy movements are then studied, first ($6) for systems with constant Coriolis 
parameter, including inertial waves, surface waves, ‘long waves ’ and internal 
waves, and, secondly ($7) )  for systems with variable Coriolis parameter, including 
Rossby-Haurwitz waves with and without the influence of tidal effects, as well 
as problems of barotropic and baroclinic instability. Vorticity principles are used 
as the sole theoretical tool throughout the survey. 

~ ~ 

1. Introduction 
I am seized with fear and dismay as, in a room including the world’s greatest 

exponents of the dynamics of rotating fluids, in a room indeed where I am probably 
the only individual who has never written on the subject, I rise to give an intro- 
ductory survey of this formidably difficult field. Frequently during the last few 
months I have asked myself whether the organizers of this conference, when they 
chose someone whose research work has been exclusively in other areas of 
fluid mechanics to survey before such an audience such a specialized branch 
of that science, were motivated by pure desire to inflict terror; or whether they 
merely wanted to make the great ones, who together have created the dynamics 
of a rotating fluid, free to concentrate during the next few days on expounding 
their latest researches. 

A t  most one other possible motive existed, namely, to reduce the specialized 
appearance of the subject by having it surveyed by someone who could only look 
a t  it  from the point of view of the general science of fluid dynamics, and might 
attempt to fit the specializedresults on rotating fluids that those in this room have 
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discovered into the general framework of fluid-dynamic knowledge. Whether 
or not this charitable reading of the organizers’ intentions was the correct one, 
it seemed the only basis on which I could prepare something, and accordingly, 
I intend to survey different parts of the field in this way, concentrating in the first 
half of my talk on vorticity considerations in steady flow, and in the second on 
wave propagation. But please be merciful to the novice in your midst ! 

The subject appears to be divided into the mechanics of ‘thin’ sheets of fluid 
in rotation (this includes the cases of the ocean and the atmosphere, in the sense 
that their depth is small relative to their horizontal extent) and the mechanics 
of ‘fat ’ bodies of rotating fluid such as one may use in the laboratory to demon- 
strate phenomena like inertial waves and Taylor columns. However, there is an 
important continuity of ideas between the ‘fat bodies’ and ‘thin sheets’ cases. 

Early work in both fields was founded on the equations of motion of a fluid 
in a rotating frame of reference, but a lot of recent work has, instead, used results 
from the classical dynamics of fluids in non-rotating frames, including results on 
rate of change of absolute vorticity in some form such as 

These approaches through the properties of vorticity have proved very useful and 
it is of interest therefore to see how much of the dynamics of a rotating fluid 
can be understood quantitatively from this point of view. 

2. Properties of vorticity in non-rotating frames 
In  a non-rotating frame of reference, vorticity behaves in the following way”. 

First, when external forces are conservative and compressibility and viscosity 
can be neglected, the rate of change of vorticity is given by a simple geometrical 
rule. We imagine the fluid flow a t  one instant as including a multitude of tiny 
arrow-shaped elements of fluid, each pointing in the direction of the local vor- 
ticity w and with length proportional to its magnitude. Then these individual 
arrow-shaped elements of fluid must move thereafter so that they continue to 
specify both the direction and (through their lengths) the magnitude of the vor- 
ticity a t  every point. 

When density change cannot be neglected but takes place either adiabatically 
or isothermally, that is with either the specific entropy or the temperature uniform 
and constant, this result is still valid but with the lengths of the arrows propor- 
tional to vorticity divided by density. When, however, conditions are neither 
adiabatic or isothermal, the rate of change of vorticity differs from that given by 
the rule by a term, tangential to an isobaric surface, of magnitude proportional 
to the derivative of specific entropy or of temperature along a perpendicular 
tangent. In  meteorological and oceanographic problems this means to good 
approximation that only horizontal vorticity is generated, at  a rate 

where a is the coefficient of expansion of the fluid at constant pressure. 

see Lighthill (1964). 

ga(aT/aY, - aT/% o), ( 2 )  

* For an account of vorticity and its properties derived from basic mechanical principles, 
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When viscosity cannot be neglected, but the flow remains laminar, the basic 
rule is modified by a diffusion of vorticity at a diffusion coefficient equal to the 
kinematic viscosity. Turbulent flow produces, to a very rough approximation, 
a similar diffusion of mean vorticity, but of course at a much larger diffusion 
coefficient. This ‘eddy diffusivity ’ is not constant, diminishing, for example, 
near solid boundaries. Diffusion of vorticity is particularly important near solid 
boundaries since new vorticity, that is continually generated a t  a boundary 
when fluid flows over it, diffuses outward to form a boundary layer. 

Lastly, when the external force field per unit mass (5, Y ,  8) is not conservative, 
the rate of change of vorticity contains yet another term, equal to its curl. 

I have stated rather baldly, then, the basic result that arrow-shaped elements 
of fluid, each pointing in the direction of the local vorticity o and with length 
proportional to w (or, more generally, to w/p) move in such a way that they con- 
tinue to specify the vorticity field, and I have indicated how temperature 
gradients, diffusion and non-conservative external forces may modify the result. 
Let me show now how these facts are applicable to the dynamics of rotating 
fluids. 

3. Application to elementary atmospheric dynamics 
The rotation of a system containing fluid, with angular velocity a, imparts 

a vortcity 2Q to each element of fluid, additional to the vorticity o of that ele- 
ment’s relative motion in the rotating system. All the above rules must therefore 
be applied to the sum SSE, + o, usually called the absolute vorticity. 

In  meteorology and oceanography the planetary component of vorticity, 
2Q, has magnitude 1.45 x lO-*sec-l. This may actually be quite small in the at- 
mosphere compared with the vorticity of the relative motions, whose horizontal 
component at any rate is typically one order of magnitude greater, rising to 
several in the atmospheric boundary layer. 

However, the vertical component of vorticity of the relative motions, usually 
written (I, is normally not nearly so big, being comparable with or smaller than 
the planetary vorticity for all the larger-scale motions. This fact is important 
because the rules I stated regarding vorticity changes effect changes in the verti- 
cal component almost independently of changes in the horizontal component in 
many situations. 

These include all situations when horizontal lines of fluid perpendicular to the 
flow remain nearly horizontal. The vertical distance H between two such lines 
can, however, change, as in the flow over some topographical feature. Figure 1 
shows that an arrow representing the absolute vorticity vector will then change 
its vertical component in direct proportion to H .  This vertical component is 
5 + f ,  where 

(with B the latitude) is the ‘Coriolis parameter’ or vertical component of plane- 
tary vorticity, so that these are circumstances in which (neglecting diffusion and 
non-conservative forces) its rate of change is governed by equation (1). 

In  briefly surveying the application of this equation in meteorology, I start with 

f = 20sinB (3) 
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the simplest approximation that is made, namely, the geostrophic approximation 
with f treated as constant. The geostrophic approximation implies that g is 
negligible compared with f (so that a Rossby number U/Lf is small) and that 
vertical movements do not occur. The equation then becomes Df/Dt = 0, 
which for constant f is a mere identity. 

C B -.4.-.-.-. .-.- 
/ --YB .-.-.-. .-.- 

-* .-.-.-.-*-.- -. .-.-.-.-.-.- 
FIGURE 1. Flow viewed from downstream (a )  at time t ,  ( b )  at time t + & .  -.-.-, Pair of 
nearby horizontal lines of fluid perpendicular to the flow; A- B arrow-shaped element 
in direction of vorticity, with length proportional to  its magnitude; A----+ C vertical 
resultant of element AB, with length proportional to vertical component of vorticity. 

Thus there is an inherent degeneracy, as the Rossby number tends to zero, 
in the equations of two-dimensional motion of a ‘thin sheet’ of fluid with the 
Coriolis parameter constant. Such a degeneracy is a familiar feature of the geos- 
trophic wind approximation, since it allows an absolutely arbitrary set of lines 
of constant pressure to act as streamlines for a steady velocity field 

f-Y - appy ,  aP/ax). 
We shall see that the degeneracy is important in other contexts also. 

In  the finite-Rossby -number gradient-wind approximation, changes in f and 
H are still neglected, but 6 is not neglected compared with f. The equation (1) 
then becomes DtJDt = 0, the ordinary equation for two-dimensional motions 
of an incompressible inviscid fluid. Steady solutions include, for example, 
circular vortices. When in addition the variation off with Zatitude is taken into 
account, then poleward moving air loses cyclonic vorticity and equatorward 
moving air gains it and the streamlines in anticyclones are bunched together on 
the poleward side, and in cyclones on the equatorward (Huiland 1950). 

In  other problems the variation of H may be more important. In  tropical 
cyclones a great vertical stretching occurs, producing large increases in <+f, 
so that the vertical component of vorticity is enormously increased above its 
planetary value by stretching. Plow over mountain ranges, on the other hand, 
can locally reduce H and hence <+f ,  so that anticyclonic relative vorticity 
forms in a sheet over the ridge, permitting the velocity parallel to the ridge to be 
discontinuous across it. 

But I want to go back now and consider changes in horizontal velocity, that is, 
in wind shear. The eastward component of vorticity ( is the rate of change of 
north wind with height, and the northward component 7 is the rate of change of 
west wind with height. These shears produce their own twisting effect on the 
arrows representing vorticity vector. Indeed, they produce a conversion of 
-vertical vorticity into horizontal vorticity, at  a rate 

[7(f+ 0, -aft- CL 01. 
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For example, the northward component of vorticity r] is the rate of increase of 
west wind with height, and this increases the eastward component of vorticity 

a t  a rate of r](f + y). Any horizontal vorticity helps, then, to create horizontal 
vorticity in the direction at right angles. 

This does not imply that no steady wind with shear is possible. Where there 
is a horizontal temperature gradient, it can by equation (2) generate equal and 
opposite vorticity in the perpendicular direction if 

r ( f  + 6) = - P(aT/aY). (4) 

When 5 is neglected compared with f this is the familiar thermal-wind equation 
relating the increase of west wind with height to southward temperature gradient. 

Again, the tendency of horizontal vorticity to create horizontal vorticity a t  
right angles is balanced in the Ekman layer by diffusion of vorticity. On the 
geostrophic approximation this balances 

r]f+ v(a2Lgaz2) = 0,  - Ef + v(azr]/az2) = 0, (5) 

where v is the eddy diffusivity. 
These equations determine the fate of the vorticity generated at the ground 

when the wind blows over it and they make clear both the physical reason for the 
Ekman spiral, and for the well-known dependence on exp [ - (1 + i) z .J(f/2v)] 
in the case v constant. 

Both the effects just noted are present in a cold front. Outside the Ekman 
layers near the ground there are definite discontinuities Au in tangential velocity 
and AT in temperature at the front. Horizontal vorticity tangential to the front 
is created at  rates rf by vortex-line twisting and gaaT/ay by horizontal tempera- 
ture gradient. Diffusion and convection may also be present in the front, and 
Welander (1963) has shown how these determine a thickness for it, again of order 
.J(v/f) .  The two fundamental rates of creation must in the meantime balance on 
vertical integration through the layer, giving 

fAu = - (gaAT) tans (6) 

because S(aT/ay) dz through a front a t  angle s to the horizontal is (AT)  tans. 
An application of the balancing of diffusion against stretching of vertical vorticity 

is seen in the Ekman layer below a cyclone, involving the characteristic and well- 
known convergence. In  a cyclone the vertical vorticity exceeds the planetary 
value f, but tends to f at the ground. There is thus a diffusion of vertical vorticity 
into the ground, which in a steady state must be balanced by a continual stretch- 
ing of the vertical component of vorticity by an upflow wo above the Ekman 
layer : 

(7) 

For Ekman layers with constant v this gives a relationship 

SoJ(v/2f) = wo (8) 

between the external vorticity and velocity components perpendicular to an 
Ekman layer, which both is a quantitative measure of the convergence and is 
important also in the next subject I want to turn to. 
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4. Fat bodies of rotating fluid 
This is the study, whether theoretically or in the laboratory, of fat bodies of 

homogeneous fluidin rigidrotation, say about the z-axis, so that in the undisturbed 
state the vorticity is everywhere 

The classical result in this field is the Taylor-Proudman theorem that, if viscosity 
can be ignored, any small steady disturbance flow field must in the limit of zero 
Rossby number be independent of z. 

This is essentially because any variation in the velocity field with z would 
change the magnitude or direction of the arrows representing the undisturbed 
vorticity vector (9), and in steady flow with velocity of order of magnitude U 
varying significantly over distances of order L, with the Rossby number 

(0,0,2Q). (9 ) 

U / 2 Q L  (10) 

very small, no slow convection of the small relative vorticity could balance this 
change in the large undisturbed vorticity. The velocity field therefore takes the 

and the equation of continuity is 

aujax + aqay = 0. ( l a )  

The general motion is a combination of a two-dimensional motion in planes 
perpendicular to the z-axis with a motion purely parallel to the z-axis with velo- 
city independent of z. 

If the body of fluid is bounded above and below by surfaces z = H(x, y) and 
z = h(z ,y ) ,  then boundary conditions of inviscid type at  these surfaces can be 
satisfied with equations (11)  and ( l a )  only if 

u = a+/at, v = - a+jax, H -  h = P($). (13) 

(14) 

Thus, vertical rod-shaped elements remain vertical and move along paths 

H ( x ,  y) - h(x,  y) = const., 

so that their lengths remain unaltered. This is obviously necessary to avoid 
changes in the undisturbed vorticity that, as we saw, could not in steady flow 
be balanced by effects of the disturbances convecting their own vorticity. These 
motions are sometimes described as purely two-dimensional, but actually the 
w-velocity is absent only under the rather special condition when the altitude 
contours 

of ceiling and floor are the same curves. 
It is possible for an inviscid solution of this kind to be valid in most of the 

flow, excepting Ekman-type boundary layers on the floor and the ceiling, 
provided that the Taylor number 

is large, because then the Ekman-layer thickness, of order J (v /Q) ,  is small 

H ( x , y )  = const., h(x,y)  = const. (15) 

QL2/v (16) 
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compared with the dimension L of the system. These Ekman layers make only 
a slight difference to the boundary condition appropriate to the internal inviscid 
flow. We saw in fact that there is a small normal outflow (8) from an Ekman 
layer proportional to the normal component of the disturbance vorticity outside 
the layer. When H - h varies substantially as a function of the stream function (9, 
cyclonic vorticity generating outflow from both floor and ceiling boundary layers 
prevents streamlines from accurately following curves H - h = const. and causes 
them to sidle towards slightly higher values of H - h ; while anticyclonic vorticity 
moves a streamline towards slightly lower values. 

Such ‘relief’ is impossible in the other extreme case, treated recently by 
Jacobs (1964), when H -  h takes the same value on all streamlines throughout an 
extended region of the (x, y)-plane. In  such a regiontheinviscid relative flow must, 
he argues, be irrotational, since any cyclonic vorticity would produce outflow 
from both Ekman layers and so would continually shrink vortex lines, in a 
manner impossible in steady flow. The argument says essentially that, for 
example, between parallel planes rotating at angular velocity Q, the disturbed 
flow must have an axial vorticity component neither more nor less than 2Q. 
It may seem a little artificial, but only until we remember that outflow from 
Ekman layers is due to diffusion of normal vorticity into the boundary. Evi- 
dently, any excess vorticity would diffusively drain away, and so in the steady- 
flow limit would be absent. The smaller v is, the slower this would happen, in 
agreement with Jacobs’s statement that the limit as v -+ 0 and t -f co is a non- 
uniform one. 

The whole situation is related to the fact observed earlier that thin-sheet 
flow for constant Coriolis parameter is degenerate in the limit of zero Rossby 
number. In  this problem, similarly, any two-dimensional flow satisfying (13) 
might at first sight represent a steady solution, and only such refined considera- 
tions as the finite thickness of Ekman layers can be used to select the true one. 
Unfortunately, other refined considerations like finite Rossby number, or slight 
non-uniformity of sheet thickness, could perhaps alter this determination ! 

But I cannot any longer avoid mentioning the startling flow behaviour pre- 
dicted in any region where H - h is substantially smaller” than on the streamlines 
approaching that region. These streamlines cannot penetrate the region and must 
flow round it. The ‘Taylor column’ over the region can, however, contain auto- 
nomous streamlines, presumably conforming to the same rule (13), and separated 
from the external streamlines by a detached cylindrical shear layer. Analysis 
indicates that such shear layers, in which, for example, stretching and twisting 
of undisturbed vorticity can respectively be balanced by diffusive action on the 
large gradients of the horizontal and vertical components of tangential velocity, 
are of somewhat complex structure. 

Experiments a t  small Rossby number (see, for example, Hide & Ibbetson 
1965) have confirmed the existence of Taylor columns and the approximate two- 
dimensionality of the flow outside the shear layers, but have shown that irrota- 
tionality of the flow around the column is not very accurately achieved, partly 

* Similar phenomena occur when ‘ smaller ’ (used here to fix the ideas) is replaced by 
‘ larger ’ . 

27 Fluid Mech. 06 
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because the detached cylindrical shear layer is capable, as might be expected, 
of sucking in or expelling fluid. 

Other motions in fat bodies of rotating fluid that have been discussed are 
driven, not by any external pressure gradients, but by direct viscous stress at  
boundaries. I shall briefly discuss these from the point of view of changes of 
absolute vorticity. 

The results of Greenspan & Howard (1963) and Greenspan (1964) on ‘spin-up’ 
of a fluid in steady rotation, due to a sudden small increase in the angular velocity 
of both floor and ceiling, can be interpreted by saying that initially radial vor- 
ticity is produced at the boundaries but this generates azimuthal vorticity as 
described in 5 3 and, after a few rotations, Ekman layers are formed, The anti- 
cyclonic relative vorticity outside these layers causes inflow which stretches 
the external vorticity. This must reach a value characteristic of the new angular 
velocity of the boundaries in a time of order ( L 2 / v i 2 ) ~ ,  which is found to be in 
good agreement with experiment. 

When the floor and the ceiling rotate at different speeds, any steady motion 
that is set up has to involve an inviscid core rotating at an intermediate speed 
(Batchelor 1951), determined by the condition that the outflow from the Ekman 
layer on the boundary with respect to which it is cyclonic is identical, for each 
(x, y), with the inflow into the boundary with respect to which it is anticyclonic. 
The still more complicated case, considered by Proudman (1956) and Stewartson 
(1966), of flow between concentric spheres rotating a t  different speeds, combines 
these considerations of inflow and outflow balance with ‘Taylor column’ con- 
siderations. 

5. Wind-driven steady ocean currents 
I shall now continue my survey of the role of absolute vorticity in steady 

motions with a discussion of vorticity generated by non-conservative external 
forces, in the case of steady ocean currents driven by that part of the wind- 
stress field which represents its long-period average. 

Many of the writers on this subject have preferred to idealize the ocean as a 
‘thin sheet’ of liquid with the external wind-stress field of force distributed 
through the depth of the liquid. Their results, which I shall mention first, are 
strongly influenced by the degeneracy of thin-sheet problems with constant 
Coriolis parameter in the limit of zero Rossby number, a limit to which typical 
situations are closer in oceanography than in meteorology. It is really because, 
in this limit, the whole ensemble of three-dimensional ‘fat-body ’ solutions 
consists of effectively two-dimensional solutions satisfying (12), that the ensemble 
of two-dimensional solutions is far more extensive than in non-degenerate prob- 
lems. 

Another symptom of degeneracy is that the presence of a forcing term can 
lead to no solution a t  all. Thus, if the distributed force per unit mass equivalent 
to the applied wind stress is (X, Y ,  0 ) ,  then from $ 2  the vertical component of 
vorticity must change at a rate 

and in steady thin-sheet flow with constant Coriolis parameter at zero Rossby 
a Ylax - as jay ,  (17) 
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number there is no way of balancing this rate of change of vorticity due to wind- 
stress curl. 

Because the problem is degenerate, every slight departure from the assump- 
tions may need to be studied. However, the classical solution to the problem of 
what really happens is Sverdrup’s, that the steady solution is dominated by the 
variation of Coriolis parameter with latitude, so that (17) is balanced by the 
rate of change of planetary vorticity 

Df/Dt = vdf/dy = ,!I., (18) 

where v is the northward component of current. 
Because the coefficient 

p = 2.3 x cos 8 em-I sec-l 

is so small, it  is necessary to watch carefully all other terms that might be 
included in the balance. The neglect of unsteady terms, for example, is justified 
only if the driving forces are effectively constant, not just over one day as in 
elementary meteorological problems, but over a period 1/pL, where L is the scale 
of the disturbance; and this is a week even if L is as big as 1000 km. This remark 
in no way detracts from the value of calculating steady response to, for example, 
a seasonal average wind stress over a given ocean, but it does mean that unsteady 
response to gradual changes of wind stress is also of great importance. 

I shall illustrate the problem of applying boundary conditions in the steady 
case by considering a seasonal average wind-stress of the simple zonal-wind 
form (X(y), 0, 0), giving 

2, = -P-’Xt( y), aujax = P-lXt’(y). (20) 

Obviously if X”(y) > 0 there is inflow into a t  least one of any two meridional 
ocean boundaries, and conditions of zero normal flow cannot be satisfied on both. 
This difficulty is resolved by postulating a boundary layer receiving all this inflow 
of slowly moving fluid and converting it into a relatively fast flowing boundary 
current. 

In  this current changes in vertical vorticity due to north-south movement of 
planetary vorticity were at first supposed to be balanced by diffusion from the 
boundary. The idea that horizontal diffusion coefficients could produce something 
as wide as the Gulf Stream depended, of course, on the view that those currents 
generated by random wind-stress fluctuations with periods up to a week or more 
would contribute (non-linearly) to diffusion, as well as ordinary turbulence. 
Many considerations combined, however, to show that convection of relative 
vorticity cannot be ignored in such boundary currents and may dominate over 
diffusion in many parts of them. Such parts are called ‘inertial boundary layers’ 
(Fofonoff 1954; Morgan 1956; Carrier & Robinson 1962; Veronis 1963). 

A layer with inflow has fluid entering slowly and with negligible relative 
vorticity. Poleward flow then gives it anticyclonic vorticity, while at the same 
time it gets well inside the layer and can speed up. This is geometrically in agree- 
ment with the distribution of shear for a western boundary only (figure 2). 
Similarly, equatorial flow gives it cyclonic vorticity which again fits the necessary 

27-2 
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shear distribution on a western but not on an eastern boundary. We conclude 
that a boundary current with inflow can occur only on a western boundary. The 
equation (20) should be solved, therefore, so that the eastern boundary is a 
streamline, and the inflow is into the western boundary. 

FIGURE 2. Inertial boundary current with inflow. A, B, C, D, E: Slow flow enters poleward- 
moving inertial layer on western boundary and begins to be accelerated. ae: Velocity profile 
of resulting sheared flow possesses anticyclonic vorticity. 

The same arguments have been used in reverse to suggest that when outflow 
is expected on a t  least one boundary, as is so in the simple case here discussed 
when X”(  y) < 0, the necessary boundary layer with outflow can be accommodated 
only on the eastern boundary,” and therefore that the slow Sverdrup flow outside 
the layers is invariably towards the west, to yield inflow into the western bound- 
ary current andoutflowfrom the eastern one. But this conclusion raises two ques- 
tions: ‘how the fluid gets back east again’; and perhaps also ‘how at a latitude 
where X”(y) changes sign the transition between a western current with inflow 
and an eastern current with outflow occurs’. 

Carrier & Robinson (1962) gave a tentative answer to both questions using 
the idea of a eastward-moving free inertial jet, carrying away in a concentrated 
form the fluid that had flowed into the western boundary current and delivering 
it at the eastern boundary. To an ordinary laboratory fluid dynamicist it may 
seem unthinkable that a jet of some 100 km wide might retain its identity over 
5000 km of ocean, because of diffusion of vorticity and entrainment of new fluid, 

* But two difficulties in the maintenance of eastern boundary currents are noted a t  
the end of this section. 
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but on this model it can happen because any new fluid entrained from the pole- 
ward side acquires from its displacement cyclonic relative vorticity which 
enhances the jet shear (and similarly anticyclonic from the equatorward side) 
and this seems to make it possible for actual intensification of the jet to occur, 
while the growth in thickness is very slow (on a simple laminar calculation, 
ultimately like x), by contrast with xf in the non-rotating case*). Neither the 
boundary current nor the inertial jet is significantly influenced by the local wind 
stress. These ideas, which may still not be in a fully satisfactory form, throw light 
on early experiments of Fultz & Long (1951) in rotating spherical shells of liquid, 
which showed that objects moving eastward relative to the fluid drew out behind 
them concentrated jet motions, although objects moving westward did not. 

Now I have so far given no attention to the fact that the true wind stress, 
far from being uniformly distributed over the depth of the ocean, is concentrated 
at the surface. The difficulties arising from this, as well as from the stratification 
of the ocean and the topography of its bottom, are substantial. In  discussing 
them it is necessary to remember the essential degeneracy of the problem, 
which may mean that numerous small effects need to be studied carefully to see 
whether they might alter the conclusions. 

The wind-stress (rz, ry) feeds in horizontal vorticity at  the surface, and, more 
important for us, feeds in also vertical vorticity at a volume rate per unit area 
per unit time 

p-ya7,lax - aT,/ag). (21) 

This, then, is the rate of change of the total vorticity integrated through the 
depth of the ocean, and, if it is to be balanced by the beta-effect, it must be 
equal to PV, where V is the integral of the northward velocity v with respect to 
depth. 

Diffusion carries vorticity downward only through an Ekman-layer thickness 
of order J ( v / f ) ,  but we saw in $ 4  that inflow into the Ekman layer can alter the 
'internal' flow beyond it. If the Coriolis parameter were constant, the feeding 
in of cyclonic vorticity at the surface would have to be balanced by upward 
inflow w, such thatfw, equals (21), exactly asinrotating-disc problems or cyclonic 
convergence. A vertical current four orders of magnitude smaller than the postu- 
lated northward flow would suffice. It would, however, have to continue until it  
had increased the vorticity in the depths below the Ekman layer to such a high 
cyclonic value that the bottom Ekman layer would provide a balancing outflow. 
This task would appear a Herculean one because near the bottom eddy viscosity 
is probably quite small, so that extremely large cyclonic vorticity would be 
needed to produce the required outflow. 

* Asolution 
$ = (Pv3& aY(P lv4 : I  

exists for the stream function on boundary-layer assumptions, where F(7)  is a function 
tending exponentially to zero as 7 + 00 and satisfying 

Fiv + fFF"' - $P'F + $7$" - jF = 0. 

Other solutions, valid when 5,  the co-ordinate measured in the direction of the current, is 
not so large, are given by Long.( 1960). 
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The mechanism in question is, however, completely swamped by the ‘beta- 
effect’. With variable Coriolis parameter, there is no need for inflow into the sur- 
face Ekman layer to be balanced by outflow from a bottom layer; in fact, the 
vertical velocity w is not in general independent of x between the two Ekman 
layers, because a rate of generation of cyclonic vorticity f awlax by stretching can 
be balanced by pv. If this result can be integrated from the surface down to a 
bottom where w is effectively zero, we regain the relation which equates (21) 
to  pV.  This integrated relationship is of great value, even though it leaves us 
still tantalizingly short of information on the vertical distribution of v, which 
must depend critically on stratification, being influenced, for example, by equa- 
tion (4). 

The influence of the bottom is, on the other hand, certainly not unimportant, 
and inertial currents a t  any rate are not places where w can be assumed zero 
there. A western boundary current is helped by bottom topography (Warren 
1963; Greenspan 1963) to cling to depth contours since, for example, a poleward 
current on moving into shallower water must contract the planetary vorticity 
and therefore cause anticyclonic curvature of the stream, taking it out of the 
shallower water; and vice versa. 

On the other hand, an eastern boundary current would show exactly the 
opposite effect, which may be one of the explanations why regular boundary 
currents do not form up well on eastern boundaries, especially those of irregular 
shape. Another explanation is that diffusion, also, is more of a hindrance to 
maintaining concentrated flow attached to the shoreline in eastern than in 
western boundary currents. 

6. Wave motions for constant Coriolis parameter 
But it would be misleadingly unbalanced to continue any longer on a survey 

of the dynamics of rotating fluids without discussing waves and wavy movements. 
The wave systems that are possible as small disturbances to a steady state of 
a fluid are all modified by rotation, which, in addition, makes more than one 
new type of wave system possible. Most unsteady motions of rotating fluid are 
strongly influenced by the properties of these wave systems, for example, by their 
generation, dispersion, attenuation and non-linear interaction; and even the 
characteristics of many steady flows are determined in important respects by 
them. 

It is necessary both to understand the elementary disturbances of (roughly 
speaking) plane-wave type that are possible, and to be able to predict how they 
combine in more complicated motions. In  the time that remains to me I shall be 
able to survey rapidly the main elementary wave-like solutions that are known, 
making the account as connected as possible by vorticity considerations as before, 
and then to explain and illustrate just one main technique for predicting how they 
combine; actually, the technique for calculating the wave pattern generated by a 
moving disturbance. I chose this technique to  describe and illustrate, out of 
several that might have been mentioned, because the problem is important in so 
many contexts, for example, in studying ocean movements set up by a travelling 
atmospheric disturbance, or atmospheric wave motions generated by the passage 
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of wind over a large topographical feature*, or, in fat bodies, disturbances 
moving either normal to the axis or along it, with or without formation of 
Taylor columns. 

It is with the elementary waves possible in ‘fat bodies’ of homogeneous in- 
compressible fluid in rotation that my general survey of waves begins. These waves 
are usually called inertial waves, which is probably an appropriate enough name 
for waves propagated following the basic rule governing vorticity changes, be- 
cause that rule is derived from the fundamental laws about rotary inertia. 

The propagation can be understood either analytically or geometrically, 
according to taste. Analytically, small changes in vorticity must satisfy 

- a curl v = 2R av -, 
at az (22) 

representing stretching of the undisturbed vorticity vector (9). Applying the 
operation on the left a second time, we obtain 

which has plane-wave solutions 

if 
v = v,,exp[i(-at+Zx+my+nz)] (24) 

(25)  c2(Z2 + m2 + n2) = 4QZn2. 

Thus there is a high-frequency cut-off a t  the semi-diurnal frequency 2Q. The 
group velocity 

(aapl, acrlarn, aapn) (26) 

is a t  right angles to the wave-number vector (1, m, n), and so is parallel to wave 
crests instead of perpendicular to them. 

Geometrically, we begin by noticing that a plane wave in an incompressible 
fluid can involve only motions in the planes of propagation. But there will in 
general be a time lag, say 7, between adjacent planes and this causes (figure 3) 
an arrow-shaped element of fluid of length E in the direction of the undisturbed 
vorticity to change by Vr, in the directionof the fluidvelocityv, giving additional 
vorticity 

2 R (V+) 

in the plane. The associated shear must be in the velocity component a t  right 
angles, but this velocity gradient is Ar/esinO, where A is the acceleration of a 
fluid particle and e sin 8 is the distance between the planes. Hence the accelera- 
tion A is a t  right angles to the velocity V and of proportional magnitude 2 RV sin 8, 
and so particle paths are circles, and the radian frequency is a = A /  V = 2i2 sin 8, 
in agreement with (25). 

* In this written version of the lecture, only these two cases have, briefly, been treated. 
The quite general treatment included in the spoken version, together with many applica- 
tions, including those to Taylor column formation, is being separately published in an 
expanded form (Lighthill 1966). 
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w 
FIGURE 3. Illustrating plane-wave propagation of inertial waves. WXTZ and W'X'Y'Z': 
planes of constant phase; OU: Undisturbed position of arrow-shaped element of length E,  re- 
presenting undisturbed vorticity vector ( O , O ,  2R); OC: disturbed position of element, when 
particles of fluid on WX'Y'Z' are describing same curves as those on WXYZ but after 
time lag T ;  BC: this element of length Vr,  where V is velocity, therefore represents relative 
vorticity of disturbance; OD: perpendicular between planes, of length ~sin8, where 8 
is angle BOD between OD and z-direction. Since difference of velocity at 0 and D is AT, where 
A is acceleration of fluid element, shear is AT/OD = Ar/csin8. This must have magnitude 
equal to the vorticity and direction perpendicular to it. 

We can then interpret the fact that the group velocity vector lies in the plane 
by saying that the energy propagation process is one in which the different 
circular paths of elements in the plane get pulled into phase, along the direction 
specified by resolving the axis of rotation on to the plane, Experiments by 
Oser (1957) demonstrated that energy is propagated at an angle +n-B = 
c0s-l ((r/2Q) to the axisof rotation by showing that the wavesfrom a local source 
of frequency (T fill a cone with this semi-angle. The group velocity becomes 
zero only when the plane is at right angles to the axis of rotation, that is, when 
8 = in- and (T = 2C2. Standing oscillations are possible a t  this frequency. In  the 
other limit 8 --f 0 (that is, a /2Q small) the phase velocity tends to zero, but there 
is steady propagation of wave energy along the axis of rotation a t  a group velocity 
2Q/  J(12+ m2), and this can be thought of as the speed of formation of the Taylor 
column, in rather good agreement with the results of experiments by Brooke 
Benjamin & Barnard (1964). 

Now consider homogeneous fluid with a free surface z = 0 and, maybe, also a 
bottom z = - H .  Equation ( 2 5 )  still specifies the waves that will occur for 
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CT < 2Q with Z,mandnreal. Thefree surface, however, makes possible, in addition, 
solutions with n imaginary : 

0- > 2Q7 n = iN ,  P(a2-4Q2)  = CT2(P+m2). ( 2 7 )  

These solutions, varying exponentially with z ,  can satisfy the boundary conditions 
if combined into a solution proportional to coshN(z -t H ) ,  where 

c2 = gN tanh N H .  (28) 

Equations ( 2 7 )  and (28) show that for CT > SQ, when inertial waves propagating 
internally are impossible, surface waves have become possible, with their dis- 
persion relation modified by rotation. Such surface waves have a low-frequency 
cut-off at the semi-diurnal frequency.* 

When the wavelength is much greater than the depth H ,  we can make the tidal 
approximation N H  small, so that fluid movements are approximately horizontal, 
and constant from the surface to the bottom. The equations then give 

C T ~  = 4Q2+gH(12+m2). (29) 

In  this discussion the axis of rotation was taken vertical. Once the motions are 
approximately horizontal, however, the theory can be applied to tides at any 
latitude on a rotating earth, because (as in the earlier meteorological discussions) 
the vertical component of vorticity varies independently of the horizontal 
component. Equation (29) becomes 

r2 =f2++H(Z2+m2), ( 30) 

because the undisturbed value of vertical vorticity is f. 
The disturbed value of vertical vorticity is f times the ratio of depth to undis- 

turbed depth. The presence of such vorticity makes possible solutions in which 
yet another component ofwave-number is a pure imaginary quantity, say m = iM. 
For one can satisfy the inviscid boundary conditions at  a sea coast by means of 
a vortex sheet, with vorticity falling off exponentially like exp ( - My) with 
distance y from the coast. The vorticity in this sheet propagates one-dimensionally 
along the coast by rises and falls in depth, and this is the mode of tidal propaga- 
tion known as the ‘Kelvin wave’. 

The other important waves influenced by gravity are the internal waves, which 
like the inertial waves are propagated through ‘fat bodies’ of fluid.? Their 
analysis in the presence of rotation can start from equation (22), with an additional 
rate of production of horizontal vorticity (2) due to temperature gradient in- 
cluded on the right-hand side. The z-component of equation (23) then becomes 

* In  applying these results to laboratory experiments, the possible errors resulting from 
depth non-uniformity due to centrifugal force need, however, to be carefully considered 
(Miles 1964a). 

t Only a body whose vertical dimension is small compared with the scale height is con- 
sidered here. For the more general case, see Tolstoy (1963). 
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where N is the Vaisala-Brunt frequency, defined by 

and CD is the undisturbed ‘potential temperature ’, which satisfies 

a q a t  = - w m / a x  
for small disturbances. 

Plane-wave solutions of (31) satisfy 

(33) 

a2(Z2 + m2 + n2) = 4Q2n2 + N2(12 + m2), (34) 

and therefore exist only when the frequency u lies between 2i2 and N .  If strati- 
fication were so weak that N < 2i2 this would simply add a low-frequency cut- 
off at  u = N to the existing high-frequency cut-off for inertial waves a t  = 2Q. 

However, in the cases of geophysical interest, when 2Q< N ,  the character of 
inertial waves is completely destroyed by stratification. No waves for cr < 2i2 
now exist a t  all, and the waves for u > 2Q are just modified gravity waves in 
which, as for the tides, rotation produces a low-frequency cut-off a t  cr = 3Q. 
I have made these arguments for the case when the axis of rotation is vertical, 
but for any direction of the axis of rotation study of equation (34) with 4Q2n2 
replaced by [ 2 8 .  ( I ,  m, n)I2 shows again that inertial waves with substantially 
less than 2Q are completely destroyed by such stratification as is undoubtedly 
present’in geophysical cases. 

Stern (1963) has argued that a rotating spherical shell of liquid could sustain 
wave modes trapped near the equator, and Bretherton (1964) explained these 
modes as due to continued reflexion between the boundaries of inertial waves of 
low frequency whose group velocity makes a small angle with the axis of rotation. 
But in a geophysical problem the argument suggests that stratification would 
prevent these waves from occurring. 

Equation (34) with N 2  negative is relevant to problems of unstably stratified 
fluids. The term due to rotation cannot make the system stable, but it does cause 
the Rayleigh number, below which dissipative effects can cancel the gravitational 
instability, to increase (Chandrasekhar 1953; Chandrasekhar & Elbert 1955; 
Fultz 1959). 

7. Wave motions for variable Coriolis parameter 
I must turn attention now to waves in systems with variable Coriolis para- 

meter, beginning with motions that are purely horizontal with zero divergence. 
Such divergenceless motions can be expected to be realized at  any rate in experi- 
ments with spherical shells of liquid, like those of Fultz & Long (1951) and Fren- 
Zen (1955). Although I mentioned earlier that eastward-moving objects in their 
experiments drew out behind them concentrated jet motions, westward-moving 
objects by contrast set up wavy disturbances. These are the waves associated with 
the names of Rossby and of Haurwitz. 

Their law of propagation states that the vertical component of relative 
vorticity changes simply due to north-south convection of planetary vorticity : 

agat  = -pv. (35) 
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On Rossby’s ‘ beta-plane ’, locally approximating the true spherical-surface 
metric by a flat one, this gives for the stream function 

a(v2g)/at+p(a@/ax) = 0. (36 )  

CT(P+m2)+pl= 0. (37) 

Plane-wave solutions like (24) are then possible if 

FIGURE 4. Rossby waves generated by an obstacle in an eastward flow with uniform velocity 
U that began at time t = 0. The waves are of uniform length 2a( U/p)*  and spread with uni- 
form group velocity U relative to a point moving with the flow. After time t ,  therefore, they 
fill a circle (shown faint) of radius Ut, centred on a point Ut downstream of the obstacle. 

The speed of drift of the whole wave pattern towards the west is therefore 

- all = p/(12 +m2) = pA2/4.rr2, (38) 

and depends only on the wavelength A. The group velocity (aclal, &/am) has 
the same magnitude (38) but, as Longuet-Higgins (1964) has pointed out, is in a 
different direction and makes an angle with the eastward direction which is 
twice the angle that the phase velocity makes (or the wave-number vector 

The drift can, of course, be cancelled by a westerly flow U equal to (38), which, 
for example, is 4m/sec for a wavelength of 3000 km at 45 O latitude. On such a 
flow, therefore, stationary waves can exist, satisfying 

( 1 7  m)). 

0211. + (pi U )  11. = 0. (39) 

Any source, such as an obstacle in the flow, can according to this equation gener- 
ate waves spreading out from it isotropically, with uniform wavelength. Also 
the group velocity of these waves, relative to the flow, is U ,  so that, for example, 
if the flow had started at time t = 0 they would be present only in a circle centred 
on a point a distance Ut downstream of the obstacle, with radius Ut (figure 4) .  

Conversely, a source moving towards the west through still air with speed U 
would also generate such waves. By contrast, the oceanographers are interested 
in the case when an atmospheric disturbance passes eastward over the ocean, 
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which to this approximation is represented by equation (39) with U negative, 
with non-wavy solutions* decaying exponentially beyond a distance J( - 0//3). 
Rossby waves in the ocean cannot be excited by such eastward-moving dis- 
turbances. 

In  the true spherical geometry, which must be used for the really large-scale 
phenomena, equation (35) can be written 

where in terms of latitude 6' and longitude $ the Laplacian signifies 

and the velocities are 

Evidently, waves can again be generated by disturbances moving westward. 
But, because the sphere is a limited region, there are certain velocities a t  which 
the disturbance can move for which these waves get intensified by resonance. 
A normal mode on the sphere, 

where Sn is a spherical harmonic satisfying 

V2S,+n(n+1)Sn = 0, (44) 

is such a solution, which a disturbance moving westward at an angular speed 

2Q 
A Q = -  

n(n + 1) (45) 

about the axis would make. Long (1952) found that well-marked patterns were 
created in the spherical-shell experiments for speeds of westward movement 
satisfying just such a condition, but with C2 on the right replaced by Q + AQ, 
apparently as if in the steady state almost the full angular velocity Q + A Q  
of the obstacle had communicated itself to the fluid. 

Longuet-Higgins (1964) points out that some of the resonant solutions 
involve wavy motion only at  the lower latitudes; for example, the spherical 
harmonic P; for large n does so only below the latitude cos-l(s/n), where the 
wave crests reflected back a t  a locus of cusps. Modes of this kind were observed 
by Fultz & Frenzen (1955). 

A more recent paper by Longuet-Higgins (1965) shows (amongst other things) 
that a divergence-free approximation neglecting tidal terms is in geophysical 
problems truly applicable only under very restrictive conditions. This result 
is yet another consequence of the degeneracy of the steady divergence-free case, 

* Typically, K,[rJ( - P/U)] ,  where r is distance from the source and K,  is a modified Bessel 
function of the second kind. 
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which means that many terms which would normally be expected to be small 
are in fact important. The ‘ beta-effect ’ is only one of these. Equation (37 )  shows 
that avery slight unsteadiness,with a frequency of order pL, where L is a charac- 
teristic length, is equally important (as I mentioned already in relation to wind- 
driven currents). But also the tidal contribution, which might be expected to  
be small if velocities of drift are small compared with 2/(gh), is not in fact small and 
needs to be added to (37), giving 

a[Z2 + m2 + (f2 - a 2 ) / g H ]  + /3l = 0. (46 )  

If a is of order pL we may, actually, neglect the additional term in cr2, but not 
that in fz. Then the speed of drift of the Rossby wave pattern towards the west 
becomes 

u =-------. P giving l2  + m2 = U - f2 /gH.  
l 2  + m2 +f21gH’ (47) 

The two terms here would be actually equal at a latitude of 45” only if U was as 
great as 16m/sec multiplied by the depth in kilometres. In  practical cases, there- 
fore, the tidal term is a minor, but usually not negligible, correction to the wave- 
length. The whole theory of Rossby waves, including the case shown in figure 4, 
remains true if this correction is made. 

With spherical geometry the corresponding equation is 

where V = v cos 0 is what would be R-I a@/a$ for a divergenceless case. Here 
4Q2R2/gH is about 90 divided by the depth in kilometres, so that the additional 
term in (48) is comparable with n(n+ 1) V for the smaller values of n, and the 
pattern drifts to the west slower for these than (45) would predict, just as (47 )  
gave in the beta-plane case. 

But even a very rapid survey of waves, like this, must include discussion of 
waves in sheared flows. In these, the vorticity of the undisturbed flow shows a 
variability additional to that exhibited by the Coriolis parameter. One problem 
studied by the meteorologists has been that of disturbances to a zonal flow 
whose speed varies only with latitude. The problem is of limited applicability, 
because it is founded on the barotropic assumption of uniform potential tempera- 
ture, excluding variation of wind with height; but it serves as a useful introduc- 
tion to the principles. 

If the vertical component of relative vorticity in the undisturbed state is 
Z(y), then equation (35)  is augmented by the additional term -Z’(y)v. When 
we work in a beta-plane this term is + U”(y) v, giving 

Thenwaveswhosex-componentofwave-numberisahave + = $(y)exp[ia(x-ct], 
where 

( U  - c )  (4”- a24) + (p- U”) $ = 0. (50) 
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The beta-effect helps to stabilize a shear flow that would normally be unstable; 
and for U = U ,  tanh ( y / L )  Lipps (1965) found the condition for stability to be 

The baroclinic instability problem has proved far more difficult? although its 
significance is so much greater. At this stage in a lecture I can perhaps be for- 
given for omitting the mathematical details (see, for example, Charney 1947; Kuo 
1952; Arnason 1963; Pedlosky 1963,1964; Miles 1964b; Phillips 1964). The waves 
considered are dependent both on the beta-effect and on vertical wind shear, 
with its associated horizontal temperature gradients? but do not allow for any 
other variation with latitude in the undisturbed quantities or their perturbations. 
In  certain ranges of wave-number they can be thought of as Rossby waves that 
derive a certain rate of exponential build-up from the destabilizing effect of the 
wind shear, mitigated to some extent by the stabilizing effect of temperature 
stratification. 

But I know I have talked for far too long, and now it is time to yield the floor 
to experts. 

R E F E R E N C E S  

ARNASON, G. 1963 Tellus 15, 205. 
BATCHELOR, G. K. 1951 Q.J.M.A.M. 4, 29. 
BRETHERTON, F. P. 1964 Tellus 16, 181. 
BROOKE BENJAMIN, T. & BARNARD, B. J. S. 1964 J. Fluid Mech. 19, 193. 
CARRIER, 0. F. & ROBINSON, A. R. 1962 J .  Fluid Mech. 12, 49. 
CHANDRASEXHAR, S. 1953 Proc.  Roy. SOC. A, 217, 306. 
CHANDRASEXHAR, S. & ELBERT, D. D. 1955 Proc. Roy. SOC. A, 231, 198. 
CHARNEY, J. G. 1947 J .  Meteor. 1, 135. 
FOFONOFF, N. P. 1954 J .  Mur. Res. 13, 254. 
FRENZEN, P. 1955 Bull. Amer. Met. SOC. 36, 204. 
FULTZ, D. 1959 J. Meteor. 16, 199. 
FULTZ, D. & FRENZEN, P. 1955 J .  Meteor. 12, 332. 
FULTZ, D. & LONG, R. 1951 Tellus 3, 61. 
GREENSPAN, H. P. 1963 J. Mur. Res. 21, 147. 
GREENSPAN, H. P. 1964 J .  Fluid 1CIech. 20, 673. 
GREENSPAN, H. P. & HOWARD, L. N. 1963 J .  Fluid Mech. 17, 385. 
HIDE, R. & IBBETSON, A. 1965 An experimental study of ‘Taylor columns’. To appear 

HOILAND, E. 1950 Geofys. Publ. 17, no. 10. 
JACOBS, S. J. 1964 J .  Fluid Mech. 20, 581. 
Kuo, H. L. 1952 J .  Meteor. 9, 260. 
LIGHTHILL, M. J. 1964 Laminar Boundary Layers, Ch. 2 (ed. L. Rosenhead). Oxford 

University Press. 
LIGHTHILL, M. J. 1966 On waves generated in dispersive systems by travelling forcing 

effects, with applications to the dynamics of rotating fluids. J .  Fluid &Tech. (to appear). 
LIPPS, F. B. 1965 J .  Fluid Mech. 21, 225. 
LONG, R. R. 1952 J .  Meteor. 9, 187. 
LONG, R. R. 1960 J .  Fluid Mech. 7, 632. 

in Icurus. 



Dynamics of rotating $uids: a survey 

LONGUET-HIGGINS, M. S. 1964 Proc. Roy. SOC. A, 279, 446. 
LONGUET-HIGGINS, M. S. 1965 Proc. Roy. SOC. A, 284, 40. 
MILES, J. W. 1964a J .  Fluid Mech. 18, 187. 
MILES, J. W. 19643 J .  Atmos. Sci. 21, 603. 
MORGAN, G. W. 1956 Tellus 8 ,301 .  
OSER, H. 1957 Archiv. Rat. Mech. Anal. 1, 81. 
PEDLOSKY, J. 1963 Tellus 15, 20. 
PEDLOSKY, J. 1964 Tellus 16, 12. 
PHILLIPS, N. A. 1964 Tellus 16, 268. 
PROUDMAN, I. 1956 J. Fluid Mech. 1, 505. 
STERN, M. E. 1963 Tellus 15, 246. 
STEWARTSON, K. 1966 J .  Fluid Mech. (to appear). 
TOLSTOY, I. 1963 Rev. Mod. Phys. 35, 207. 
VERONIS, G. 1963 Tellus 15, 59. 
WARREN, B. A. 1963 Tellus 15, 167. 
WELANDER, P. 1963 Tellus 15, 33. 

43 1 




